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Random processes under restart

Restart - interruption of a process followed by starting a new statistically
independent realization.

Motivation to restart: a proper restart policy could decrease the characteristic
time scale of process completion (mean, median or mode) and/or increase the
deadline meeting probability.

Key application: restart-induced speed up of randomized computer algorithms
[1]Alt et.al. A method for obtaining randomized algorithms with small tail probabilities, Int. Comp. Sci.
Inst. (1991)
[2]Luby et.al. Optimal speedup of Las Vegas algorithms, Inf. Proc. Lett. (1993)

Рис. 1: (from Pal & Reuveni PRL (2017)) A computer algorithm randomly scans a tree of
possibilities in search of a solution. When a given number of steps elapses without being able to solve
the problem, the algorithm is restarted to avoid prolonged wandering in the region of the search space
far from the actual solution



Another possible application: enzymatic reactions
Simple Michaelis–Menten kinetics assumes that the enzyme–substrate complex has
only one conformation that decays as a single exponential. As a consequence, the
enzymatic velocity decreases as the dissociation rate constant of the complex increases.

Recent theoretical works showed that it is possible for the enzymatic velocity to
increase when the unbinding rate koff becomes higher, if the enzyme–substrate
complex has many conformations characterised by different catalysis rates.
[3] Reuveni et al. Proc. Natl. Acad. Sci. (2014)
[4] Berezhkovskii et al. JCP (2017)

Barrier to practical use: conceivable methods to control unbinding rate koff
(temperature change, pH change, structure modifications of enzyme) affects also
other kinetic constant (binding rate kon, catalysis rate kcat).



Model formulation

Assumptions:
– the process halts with unit probability
– restart mechanism is uncoupled from the process internal dynamics
– each restart event has negligible duration

Key ingredients of model :
T - random completion time of stochastic process;
P (T ) - probability density of random variable T ;
R = {τ1, τ2, . . . } - restart protocol characterised by a (possibly infinite) sequence of
inter-restarts time intervals.

If the process is completed prior to the first restart event, the story ends there.
Otherwise, the process will start from scratch and begin anew. Next, the process may
either complete prior to the second restart or not, with the same rules. This procedure
repeats until the process finally reaches completion.

Metric of interest: mean completion time ⟨TR⟩ in the presence of protocol R.



Simple case studies

▶ Lévy-Smirnov distribution (first-passage time density for 1d diffusion)

Completion time probability density: P (T ) = L

2
√
πDT3

exp(− L2

4DT
)

(L - initial distance to a target; D - diffusion constant)

In the absence of restart mean search time diverges: ⟨T ⟩ → ∞.
Poisson restart at rate r renders expected search time finite:

⟨Tr⟩ = 1
r
(exp

√
rL2

D
− 1) (Evans & Majumdar, PRL 2011). What is more, optimal

restart rate r∗ ≈ 2.54D/L2 brings ⟨Tr⟩ to minimum.

▶ Double-exponential distribution
Completion time probability density: P (T ) = pα1e−α1T + (1− p)α2e−α2T

The mean completion time in the absence of restart: ⟨T ⟩ = p
α1

+ 1−p
α2

.

Poisson restart at rate r reduces the mean completion time:
⟨Tr⟩ = (1−p)α1+pα2+r

α1α2+(pα1+(1−p)α2)r
< ⟨T ⟩. Optimal restart rate r∗ → +∞ brings

⟨Tr⟩ to minimum.



Analytical method: renewal approach
The random completion time TR of the process in the presence of restart protocol
R = {τ1, τ2, . . . } obeys the infinite chain of equations

TR = T1 · I[T1 < τ1] + (τ1 + T res
1 ) · I[T1 ≥ τ1], (1)

T res
1 = T2 · I[T2 < τ2] + (τ2 + T res

2 ) · I[T2 ≥ τ2], (2)

...

T res
n = Tn · I[Tn < τn] + (τn+1 + T res

n+1) · I[Tn+1 ≥ τn+1], (3)

...

where
T1, T2, ... - independent random variables sampled from the probability distribution P (T );
I[...] - indicator random variable which is equal to unity the inequality in its argument is justified and is
zero otherwise;
T res
i - the i-th residual time, i.e. the time remaining to the process completion just after the i-th restart.

Performing averaging over the statistics of random variables T1, T2, ... one obtains

⟨TR⟩ =
∞∑

k=1

(∫ τk
0 dTP (T )T∫∞
τk

dTP (T )
+ τk

)
k∏

i=1

∫ ∞

τi

dTP (T ) (4)

periodic restart with period τ : ⟨Tτ ⟩ =

∫ τ
0 P (T )TdT+τ

∫∞
τ P (T )dT∫ τ

0 P (T )dT

Poisson restart at rate r: ⟨Tr⟩ =
1−P̃ (r)

rP̃ (r)
(where P̃ (r) - Laplace transform of P (T ))



Some general results

▶ When is the restart method effective?
Simple sufficient conditions for existence of effective restart strategy:
– power-law tail of completion time density P (T );
– σ(T )

⟨T ⟩ > 1, where σ(T ) - is the standard deviation of the random completion
time in the absence of restart (Reuveni PRL 2016).

▶ Which protocol is the most effective?
Optimally tuned periodic restart beats any other restart strategy: if you found a
value τ∗ ≥ 0 (probably τ∗ = +∞) such that ⟨Tτ∗ ⟩ ≤ ⟨Tτ ⟩ for any τ ≥ 0, then
⟨Tτ∗ ⟩ ≤ ⟨TR⟩ for all R (Luby et al. 1993, Lorenz 2021).



Research question 1: performance limit of restart

What, if any, are the fundamental limitations of the optimization via restart?

We are wondering if the mean performance of restart is bounded from below by some
simple statistical characteristics of the original process. More specifically, we seek to
derive inequality of the form

⟨TR⟩ ≥ CT (5)

where
TR - random completion time of the generic stochastic process under arbitrary restart protocol R;
T - some time scale expressed through the statistical moments, quantiles or mode of the probability
density P (T );
C - universal positive constant which depends neither on specific form of P (T ) nor on the particular
restart schedule R.



No-go results

Previous works have shown the importance of relative fluctuation σ/µ, where µ = ⟨T ⟩
and σ =

√
⟨T 2⟩ − ⟨T ⟩2, for the analysis of the potential response of stochastic

process to restart. Namely, the inequality σ/µ > 1 represents a sufficient condition for
the existence of a restart protocol that reduces the expected completion time.

Given this result, let us first find out if knowledge of the mean value µ and the
standard deviation σ allows one to write a lower bound on the average performance of
restart. Consider, probability density P (T ) = pδ(T − t1) + (1− p)δ(T − t2), where

0 ≤ t1 ≤ t2 and 0 ≤ p ≤ 1. Putting t2 = µ2+σ2

µ
, p = σ2

µ2+σ2 , τ = t1 + 0 and t1 → 0,
one immediately obtains from the relation

⟨Tτ ⟩ =
∫ τ
0 P (T )TdT + τ

∫∞
τ P (T )dT∫ τ

0 P (T )dT
, (6)

that ⟨Tτ ⟩ = t1/p → 0. We see that for the fixed values of µ and σ, the completion
time ⟨Tτ ⟩ can be arbitrarily small. Therefore, the pair (µ,σ) does not produce any
non-trivial lower bound.



Universal performance bound
Restart performance is limited to a quarter of the harmonic mean completion time:

⟨TR⟩ ≥
1

4
h (7)

where h = ⟨T−1⟩−1.

———————————————————————————————————————–
Proof:
Let τ∗ be the best period of regular restart protocol for a given stochastic process, i.e.

⟨Tτ∗ ⟩ ≤ ⟨Tτ ⟩ (8)

for any τ ≥ 0. Luby et al. 1993 and Lorenz 2021 proved that ⟨Tτ∗ ⟩ ≤ ⟨TR⟩ for any R.
Also, as shown by the same authors the mean performance of an optimal periodic
restart obeys the condition

⟨Tτ∗ ⟩ ≥
1

4
min
τ

τ

Pr[T ≤ τ ]
. (9)

Applying Markov’s inequality to the variable ω = 1/T we find
Pr[T ≤ τ ] = Pr[ω ≥ 1

τ
] ≤ τ⟨ω⟩ = τ⟨ 1

T
⟩. Next, taking into account Eq. (9) one

obtains ⟨Tτ∗ ⟩ ≥ 1
4
h, where h = ⟨T−1⟩−1 is the harmonic mean completion time of

the original process. And finally, since ⟨TR⟩ ≥ ⟨Tτ∗ ⟩ for any R, this yields (7). No
constraints have been imposed on the form of P (T ), and, therefore, Eq. (7) is
universally valid for any setting.



Particular case of smooth unimodal distribution

Somewhat less general, but still informative, result can be obtained if we assume that
the completion time distribution P (T ) is smooth and exhibits single local maximum at
some non-zero value of T . The efficiency of any restart protocol in this case satisfies
the inequality

⟨TR⟩ ≥
1

4
M (10)

where M = argmaxTP (T ) > 0 is the mode of the probability distribution P (T ), i.e.
the value of the random completion time T that occurs most frequently.

———————————————————————————————————————–
Proof:
To prove Eq. (10) let us introduce τ0 ≡ argminτ

τ
Pr[T≤τ ]

. Clearly, assumption M > 0

implies that τ0 > 0. Since the smooth function f(τ) = τ
Pr[T≤τ ]

attains its minimal
value at τ = τ0, one obtains df(τ0)/dτ = 0 or, equivalently, P (τ0)τ0 =

∫ τ0
0 P (T )dT .

Next, as the unimodal function P (T ) is non-decreasing on the interval form 0 to M ,
this extrema condition implies the inequality τ0 ≥ M and, therefore,

τ0
Pr[T≤τ0]

≥ M
Pr[T≤τ0]

≥ M . Together with Eq. (9) this yields inequality ⟨Tτ∗ ⟩ ≥ 1
4
M .

Recalling that ⟨TR⟩ ≥ ⟨Tτ∗ ⟩ for all R, we then obtain Eq. (10). Note also, that if the
probability distribution P (T ) has multiple local maxima, then ⟨TR⟩ ≥ 1

4
Mmin, where

Mmin is the leftmost mode.



Research question 2: How good is the best protocol?

Next let us construct an inequality of the form

⟨Tτ∗ ⟩ ≤ CT (11)

where
⟨Tτ∗ ⟩ - expected completion time at optimal restart period τ∗;
T - some time scale determined by the original stochastic process;
C - universal positive constant which depends neither on specific form of P (T ) nor on the optimal
restart period τ∗.

No-go result:
It is easy to understand that the upper bound limit on optimal performance cannot be
expressed via the harmonic mean h or the mode M . Indeed, for the half-normal

distribution P (T ) =
√

2
πσ2 e

− T2

2σ2 one has τ∗ = +∞, so that ⟨Tτ∗ ⟩ = ⟨T ⟩ > 0,
whereas h = M = 0. Therefore, inequalities of the form ⟨Tτ∗ ⟩ ≤ C1h and
⟨Tτ∗ ⟩ ≤ C2M , where C1 and C2 are positive constants, cannot be universally valid.



Performance bound for optimal restart

The desired universal upper bound can be expressed in terms of the median
completion time m of the original process obeying by definition the equation
Pr[T ≤ m] = 1/2. Namely

⟨Tτ∗ ⟩ ≤ 2m (12)

Thus, no matter how heavy the tails of P (T ) are, in the presence of an optimally
tuned periodic restart, the average completion time does not exceed twice the median
of the unperturbed process.

Proof:
Taking into account that ⟨Tτ∗ ⟩ ≤ ⟨Tτ ⟩ for any τ ≥ 0 together with the inequality

⟨Tτ ⟩ =
∫ τ
0 P (T )TdT+τ

∫∞
τ P (T )dT∫ τ

0 P (T )dT
≤ τ

Pr[T≤τ ]
, we find ⟨Tτ∗ ⟩ ≤ τ

Pr[T≤τ ]
.

Substituting m for τ in the last inequality one obtains (12).

Importantly, the bound dictated by Eq. (12) is sharp. Indeed, for
P (T ) = 1

2
δ(T − t) + 1

2
δ(T − 3t) one obtains m = t and ⟨Tτ∗ ⟩ = 2t, where τ∗ = t.



Yet another no-go result

Given this result, it is natural to ask if the median value can be used to construct the
bottom bound of restart performance in the spirit of Eqs. (7) and (10). The answer is
no. A simple counterexample demonstrating that the inequality ⟨TR⟩ ≥ Cm, where C
is universal non-zero constant, cannot be valid is given by the Weibull distribution
P (T ) = k

λk T
k−1e−(T

λ
)k with 0 < k < 1 for which ⟨Tτ∗ ⟩ = 0, where τ∗ → 0, and

m > 0.



Checking consistency

Inequalities ⟨TR⟩ ≥ 1
4
h and ⟨Tτ∗ ⟩ ≤ 2m do not contradict each other since

h ≤ 2m (13)

for any probability density P (T ). Indeed, applying Markov’s inequality we find
1/2 = Pr[T ≤ m] = Pr[ω ≥ 1

m
] ≤ ⟨ω⟩m = T1/2/h, where ω = 1/T .

Also, ⟨Tτ∗ ⟩ ≤ 2m does not contradict ⟨TR⟩ ≥ 1
4
M since

M ≤ 2m (14)

for any continuous unimodal probability density P (T ). To prove this, assume the
contrary, that is, let M > 2m be true for some non-negative random variable T . By
the virtue of definition we have

∫m
0 P (T )dT =

∫+∞
m P (T )dT = 1/2. Further, it

follows from the definition of the mode that the function P (T ) is non-decreasing on
the interval [0,M ]. Then, on the one hand∫M
m P (T )dT >

∫ 2m
m P (T )dT ≥

∫m
0 P (T )dT = 1/2, and on the other∫M

m P (T )dT ≤
∫+∞
m P (T )dT = 1/2. We got a contradiction.



Numerical results

For the sake of illustration we explored several probability distributions P (T ), whose
response to restart has been extensively discussed in the physical and computer
science literature.

Рис. 2: In accordance with our analytical predictions all points belong to the light orange region
determined by the conditions 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y ≤ 1/(4x).



Beyond the mean performance
Inequality constraints derived above can be generalized to higher order statistical

moments of random completion time. First of all, since k
√

⟨Tk
R⟩ ≥ ⟨TR⟩ for any

natural k due to Jensen’s inequality, we immediately find from relation ⟨TR⟩ ≥ 1
4
h

that k
√

⟨Tk
R⟩ ≥ 1

4
h for a generic stochastic process under an arbitrary restart protocol.

A similar extension of relation ⟨Tτ∗ ⟩ ≤ 2m is more tricky. It turns out that the
statistical moments of the optimal completion time Tτ∗ satisfy the inequality

k
√

⟨Tk
τ∗ ⟩ ≤ 2

k
√
k!m. (15)

Proof:
To prove Eq. (15) let us assume that the process, which is being restarted periodically
in an optimal way, becomes subject to an additional restart protocol RΓ characterized
by random restart-intervals τ1, τ2, . . . independently sampled from Gamma
distribution ρ(τ) = βk

Γ(k)
τk−1e−βτ with shape parameter k and infinitesimally small

rate parameter β. This produces a deferential correction
⟨Tτ∗+RΓ

⟩ − ⟨Tτ∗ ⟩ ≈ 1
k!

(
⟨Tτ∗ ⟩⟨Tk

τ∗ ⟩ −
1

k+1
⟨Tk+1

τ∗ ⟩
)
βk to the mean completion time

attained by the optimal periodic restart. Because of the dominance of a periodic
restart over other restart strategies, one can be sure that this difference is positive, and
therefore ⟨Tk

τ∗ ⟩ ≤ k!⟨Tτ∗ ⟩k. Together with relation ⟨Tτ∗ ⟩ ≤ 2m this yields Eq. (15).



Potentially non-stopping processes
So far we have assumed that the process terminates in finite time with probability 1.
however, our results remain unchanged or require a trivial modification when one
introduces the non-zero probability of never stopping.

Namely, once the probability q = Pr[T < +∞] of halting for a given stochastic
process is known, one can improve the estimate ⟨TR⟩ ≥ 1

4
h as follows:

⟨TR⟩ ≥
1

4

h

q
(16)

Also, inequality ⟨TR⟩ ≥ 1
4
M holds even for potentially non-stopping processes, with

the obvious caveat that M should now be considered as the most frequent completion
time of halting trials.

Finally, if the process has non-zero probability of never halting, the mean performance
of optimal periodic restart obeys

⟨Tτ∗ ⟩ ≤ 2
ms

q
(17)

where ms denotes the median completion times of the halting trials.



Conclusion
We derived a range of statistical inequalities that offer constraints on the effect
that restart could impose on the completion time of a generic stochastic
process.
Publication: Starkov & Belan PRE 2023

Key results:
▶ Restart performance is limited to a quarter of the harmonic mean completion time: ⟨TR⟩ ≥ 1

4
h

▶ For the tasks with smooth unimodal completion time distribution one obtains: ⟨TR⟩ ≥ 1
4
M

▶ The twice median sets upper bound on the optimized mean completion time: ⟨Tτ∗ ⟩ ≤ 2m

▶ The statistical moments of completion time at optimal restart conditions obey:
k
√

⟨Tk
τ∗ ⟩ ≤ 2

k√
k!m

▶ Novel sufficient condition for restart to be efficient: ⟨T ⟩ > 2m

Some open questions:
▶ Our analyses does not answer the question of whether the bounds ⟨TR⟩ ≥ 1

4
h and

⟨TR⟩ ≥ 1
4
M are sharp.

▶ How does accounting for non-zero time penalty Tp for restart modifies the bounds constructed
here? ⟨Tτ∗ ⟩ ≤ 2(m + Tp).

▶ Performance bounds for restart-induced optimization of other metrics: median completion time,
deadline meeting probability, etc.

Acknowledgments: The work was supported by the Russian Science
Foundation, project no. 22-72-10052.



Useful corollary: novel criterion of restart efficiency
As follows from relation ⟨Tτ∗ ⟩ ≤ 2m the inequality

⟨T ⟩ > 2m (18)

guarantees that there exists finite restart period decreasing the expected completion
time.

What is particularly interesting is that this simple inequality makes it possible to
capture the benefit of restarting in those cases when analysis of the relative fluctuation
cannot. In figure below we compare the applicability of two criteria, ⟨T ⟩/m > 2 and
σ(T )/⟨T ⟩ > 1, using the mix of two delta-functions
P (T ) = p · δ(T − t1) + (1− p) · δ(T − t2) as a model distribution.

a = t2/t1
Black area: restart is not efficient.
Purple area: restart is efficient and both criteria, σ(T ) > ⟨T ⟩ and ⟨T ⟩ > 2m, are fulfilled.
Blue area: restart efficiency is captured only by the inequality σ(T ) > ⟨T ⟩.
Red area: only the condition ⟨T ⟩ > 2m is satisfied.
Orange area: neither of the two sufficient conditions is met, but restart is useful nevertheless.



Optimal property of periodic restart
Let τ∗ be the best period of regular restart protocol for a given stochastic process, i.e.

⟨Tτ∗ ⟩ ≤ ⟨Tτ ⟩ (19)

for any τ ≥ 0. Also, let R∗ = {τ∗
1 , τ∗

2 , ...} be an optimal restart protocol for the same process. By the
definition of optimal protocol this means that

⟨TR∗ ⟩ ≤ ⟨TR⟩ (20)

for any R. Below we show that ⟨Tτ∗ ⟩ = ⟨TR∗ ⟩.
The random completion time in the presence of restart events scheduled accordingly to the protocol R∗
can be represented as

TR∗ = TI(T < τ
∗
1 ) + (τ

∗
1 + TR′

∗
)I(T ≥ τ

∗
1 ) (21)

where R′
∗ = {τ∗

2 , τ∗
3 , ...}. Averaging over the statistics of original process yields

⟨TR∗ ⟩ = ⟨TI(T < τ
∗
1 )⟩ + τ

∗
1 ⟨I(T ≥ τ

∗
1 )⟩ + ⟨TR′

∗
⟩⟨I(T ≥ τ

∗
1 )⟩, (22)

where we exploited statistical independence of T and TR′
∗
. Since R∗ is optimal, then

⟨TR′
∗
⟩ ≥ ⟨TR∗ ⟩, and, therefore,

⟨TR∗ ⟩ ≥ ⟨TI(T < τ
∗
1 )⟩ + τ

∗
1 ⟨I(T ≥ τ

∗
1 )⟩ + ⟨TR∗ ⟩⟨I(T ≥ τ

∗
1 )⟩, (23)

and

⟨TR∗ ⟩ ≥
⟨TI(T < τ∗

1 )⟩ + τ∗
1 ⟨I(T ≥ τ∗

1 )⟩
⟨I(T < τ∗

1 )⟩
(24)

Comparing right-hand sides of Eqs. (24) and ⟨Tτ ⟩ =

∫ τ
0 P (T )TdT+τ

∫∞
τ P (T )dT∫ τ

0 P (T )dT
, one obtains

⟨TR∗ ⟩ ≥ ⟨Tτ∗
1
⟩. (25)

From Eqs. (19), (20) and (25) we may conclude that ⟨TR∗ ⟩ = ⟨Tτ∗ ⟩, and, therefore, ⟨Tτ∗ ⟩ ≤ ⟨TR⟩
for any R.



Useful inequality from Luby et al. 1993
As shown by (Luby et al. 1993, Lorenz 2021) the mean performance of an optimal periodic
restart obeys the condition

⟨Tτ∗ ⟩ ≥
1

4
min
τ

τ

Pr[T ≤ τ ]
. (26)

———————————————————————————————————————–
Proof:
If ⟨Tτ∗ ⟩ ≥

τ∗
2Pr[T≤τ∗]

, then the inequality ⟨Tτ∗ ⟩ ≥ 1
4
minτ

τ
Pr[T≤τ ]

is evident.
Next, we assume that ⟨Tτ∗ ⟩ <

τ∗
2Pr[T≤τ∗]

. Let us introduce a variable

T̃ ≡ min(T, τ∗). It follows from the relation ⟨Tτ ⟩ = ⟨min(T,τ)⟩
Pr[T≤τ∗]

that

⟨T̃ ⟩ = ⟨Tτ∗ ⟩Pr[T ≤ τ∗]. Next, due to the assumption τ∗ > 2⟨Tτ∗ ⟩Pr[T ≤ τ∗] and the
Markov’s inequality Pr[T̃ > 2⟨T̃ ⟩] ≤ 1

2
we find

Pr[T > 2⟨Tτ∗ ⟩Pr[T ≤ τ∗]] = Pr[T̃ > 2⟨Tτ∗ ⟩Pr[T ≤ τ∗]] = Pr[T̃ > 2⟨T̃ ⟩] ≤ 1
2
.

Therefore
Pr[T ≤ 2⟨Tτ∗ ⟩Pr[T ≤ τ∗]] ≥

1

2
. (27)

Now, let us denote t ≡ 2⟨Tτ∗ ⟩Pr[T ≤ τ∗]. It follows from the inequalities (27) and
Pr[T ≤ τ ] ≤ 1 that

min
τ

τ

Pr[T ≤ τ ]
≤

t

Pr[T ≤ t]
=

2⟨Tτ∗ ⟩Pr[T ≤ τ∗]

Pr[T ≤ 2⟨Tτ∗ ⟩Pr[T ≤ τ∗]]
≤ 4⟨Tτ∗ ⟩. (28)

This completes the proof.



Example: trypsin-catalyzed protein digestion
Trypsin catalyzes the hydrolysis of peptide bonds immediately after lysine/arginine
(K/R) residues in proteins.

(from https://at.promega.com)
However, the cleavage rate is affected by specific surrounding amino acids. In other
words, the enzyme–substrate complex has many conformations so that distribution of
catalysis time should be treated as multiexponential.

(from Pan et al. "Quantitative proteomics reveals the kinetics of
trypsin-catalyzed protein digestion."A. B. C. (2014))


